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Abstract

The operation of heat exchangers and other thermal equipment in the face of variable loads is usually controlled by

manipulating inlet fluid temperatures or mass flow rates. This is a fundamental study of the basic issues regarding state

and output controllability in such systems. A numerical method based on finite-differences is developed to approximate

infinite-dimensional equations by finite-dimensional ones for the study of a conduction–convection system. The dy-

namics of a single-pass cross-flow heat exchanger with simultaneous advection, convection and conduction, in which

water and air are the in- and over-tube fluids, respectively, is represented by a coupled set of partial differential

equations. The numerical method is used to analyze the behavior of the heat exchanger equations. Using the water or

air inlet temperature as the manipulated variable leads to a linear problem, and for the water flow rate it is non-linear.

Controllability results for different choices of the manipulated variable are presented.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Before attempting to design a control strategy for a

system to achieve a desired objective, it is clearly desir-

able to determine whether any control is possible for the

system. This can be done by investigating its state con-

trollability; this is the ability of the complete system to

be taken from any given state to any other within a

prescribed time interval. Output controllability is a sim-

ilar concept applied only to the output of the system. In

thermal systems controllability usually means that a

system with an initial temperature distribution is able to

move to any other in finite time by means of a suitable

control input which could be in the form of a flow rate,

an applied heat flux or an externally applied tempera-

ture.

Controllability is easily tested for systems governed

by a system of linear, finite-dimensional ordinary dif-
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ferential equations [1]. The situation is more compli-

cated for linear infinite-dimensional systems such as

those governed by partial differential equations (PDEs)

[2]. Controllability is exact if the function representing

the state can be taken from an initial to a final target

state, and is approximate if it can be taken to a neigh-

borhood of the target [3]. Determination of approximate

controllability is usually sufficient, and is the goal here

since it makes sense in most engineering problems. Al-

though an uncontrollable thermal system cannot in

general be taken from any state to any other, it is for

many applications not necessary since state controlla-

bility may be less important than output controllability.

For example, Rosenbrock [4] notes that most industrial

plants are controlled quite satisfactorily though they are

not state controllable. Constrained controllability where

the manipulated inputs such as flow rates and temper-

atures have finite bounds is also very relevant to thermal

engineering.

Controllability for different kinds of dynamical sys-

tems governed by PDEs has been considered in many

publications (see [5] for an extensive list). Applications

to thermal problems, however, are very limited, though

there has been some work in the areas of industrial and

chemical plants and thermal networks [6]. The control-

lability of multi-stream heat exchangers, when some
ed.
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Nomenclature

A matrix operator for system

Ac cross-sectional area [m2]

A operator for system

B operator for manipulated variable

B matrix operator for manipulated variable

C matrix operator for output variable

CM condition number of controllability matrix

c specific heat [J/kgK]

h heat transfer coefficient [W/m2 K]

k thermal conductivity [W/mK]

L length [m]

_mm mass flow rate [kg/s]

M system controllability matrix

n number of finite-difference divisions

N output controllability matrix

P perimeter [m]

r radius [m]

t time [s]

T temperature [�C]
TL boundary temperature [�C]
u manipulated variable

W �1 reachability grammian

x spatial coordinate [m]

Dx grid spacing

y output variable

Greek symbols

a thermal diffusivity [m2/s]

b eigenvalue

f parameter representing convection [s�1]

h temperature variable [�C]
q density [kg/m3]

r ¼ a=Dx2 [s�1]

/ eigenfunction

Subscripts and superscripts

a air

f final

i inner

in inlet

o outer

out outlet

t tube

T transpose

w water

1 ambient
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operating parameters deviate from their design value,

has also been studied recently [7].

In this paper the controllability of a single-pass,

single-circuit, cross-flow heat exchanger that has been

previously studied both experimentally [8] and numeri-

cally [9] will be investigated. The mathematical model is

a pair of coupled partial differential equations repre-

senting conduction in the tube wall, advection by the in-

tube fluid, and lateral convection to the over-tube fluid.

An approach based on finite-differences will be devel-

oped and tested on a simpler problem with only con-

duction and convection. This approach is convenient for

several reasons: it reduces the problem to one of finite

dimensions for which application of existing theory is

straightforward, it can be easily applied to operators

that are not self-adjoint, and it can also be conveniently

used in other thermal and fluid mechanical problems in

which large-scale numerical methods are currently used

for flow computations. Control by manipulating inlet

temperatures will be analyzed in this way.

The problem of flow rate manipulation, which is also

very common in thermal systems, is special; it is non-

linear for which general controllability theorems are not

available. However, it turns out that due to the physics

of the phenomena that take place, controllability within

definite bounds can also be demonstrated.
2. Diffusive-convective system

In this section the fin equation, which is a one-

dimensional conduction–convection system that gives a

single second-order PDE [10], will be analyzed. This has

many of the aspects to be considered later in the heat

exchanger model. Though the controllability of this

system has been analyzed previously [5], it will be shown

that it can be studied using either infinite-or finite-

dimensional approaches.

A conductive bar of length L that is being cooled or

heated from the side as schematically shown in Fig. 1 is

considered. There is conduction along the bar as well as

convection to the surroundings from the side. The

temperature distribution is governed by

oT
ot

¼ a
o2T
ox2

� fðT � T1Þ; ð1Þ

where T ðx; tÞ is the temperature distribution along the

bar representing the state of the system, T1 is the tem-

perature of the surroundings, t is time, and x is the lon-

gitudinal coordinate measured from one end. The

thermal diffusivity is a, and f ¼ hP=qcAc where h is the

convective heat transfer coefficient, Ac is the constant

cross-sectional area of the bar, P is the perimeter of the

cross-section, q is the density, and c is the specific heat.



Fig. 1. One-dimensional convection-conduction heat transfer problem.
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For simplicity it will be assumed that f is independent

of x.
The system is assumed to be initially at a uniform

temperature. This does not imply any loss of generality

since if a linear system is indeed controllable it can

be taken from any state to any other. An adiabatic

condition at the end x ¼ 0 will be assumed so that

ðoT=oxÞð0; tÞ ¼ 0. Either the surrounding temperature

T1 or the temperature of the other end T ðL; tÞ can be

used as a manipulation variable for control purposes. In

this context these two single-input methods are known

as distributed and boundary control since the manipu-

lated variable enters through the equation and the

boundary condition, respectively. They will be analyzed

separately.

2.1. Distributed control

In this section the controllability of the system will be

analyzed in two different ways: as a continuous system

and using a finite-dimensional approximation. The ma-

nipulated variable is the ambient temperature T1ðtÞ with
a fixed boundary condition T ðL; tÞ ¼ TL. Using TL as a

reference temperature and defining h ¼ T � TL, Eq. (1)
becomes,

oh
ot

¼ a
o2h
ox2

� fhþ fh1ðtÞ ð2Þ

with the homogeneous boundary and initial conditions

ðoh=oxÞð0; tÞ ¼ 0, hðL; tÞ ¼ 0, and hðx; 0Þ ¼ 0. For con-

venience, the initial temperature distribution has been

taken to be zero.

2.1.1. Continuous system

Consider a system governed by

oh
ot

¼ AhþBu ð3Þ

with suitable boundary and initial conditions, where A

is a bounded semi-group operator, B is a linear opera-

tor, and uðtÞ is the manipulated variable. A operates on

elements of a vector space of functions that satisfy the
homogeneous spatial boundary conditions. If A is self-

adjoint, then it has real eigenvalues bm, with m ¼ 0;
1; 2; . . ., and a complete orthonormal set of eigenfunc-

tions /mðxÞ which forms a spatial basis for h. It is known
[5] that the system is state controllable if and only if all

the inner products

hB;/mi ¼
Z L

0

B/m dx 6¼ 0: ð4Þ

In the present case

A ¼ a
o2

ox2
� f;

B ¼ f;

u ¼ h1:

The eigenvalues and eigenfunctions are

bm ¼ �ð2mþ 1Þ2p2

4L2
� f;

/m ¼
ffiffiffi
2

L

r
cos

ð2mþ 1Þpx
2L

:

Inequality (4) is satisfied for all m, so the system is

indeed state controllable.

2.1.2. Finite-dimensional approximation

Though the continuous-systems approach worked

for this simple problem, it is desirable to develop a nu-

merical approximation for the controllability test which

can also be used for more complicated problems. By

dividing the domain ½0; L� into n equal parts of size Dx, a
finite-difference spatial discretization of Eq. (2) gives

dhi
dt

¼ �ð2rþ fÞhi þ rðhi�1 þ hiþ1Þ þ fh1;

where r ¼ a=Dx2. The nodes are i ¼ 1; 2; . . . ; nþ 1,

where i ¼ 1 is at the left and i ¼ nþ 1 at the right end.

The boundary conditions used at the two ends are

h0 ¼ h1 and hnþ1 ¼ 0, respectively. Collecting the equa-

tions for all the nodes
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dh
dt

¼ Ahþ Bu; ð5Þ

where

hðtÞ ¼ ½h1; h2; . . . ; hn�T 2 Rn ð6Þ

and uðtÞ ¼ h1 2 R. Also

A ¼

�ð2rþ fÞ 2r 0 � � � 0

r �ð2rþ fÞ r ..
.

0 . .
. . .

. . .
.

..

.
r

0 � � � 0 r �ð2rþ fÞ

2
6666666664

3
7777777775

2 Rn�n;

B ¼ f½1; . . . ; 1�T 2 Rn;

ð7Þ

where the boundary conditions have been applied to

make A non-singular.

It is known [1] that the state of a system of the form

of Eq. (5) is completely controllable if and only if the

matrix

M ¼ ½B;AB; . . . ;An�1B� 2 Rn�n ð8Þ

is of full rank. In the present case it can be shown that

det M ¼ ð�1Þ½n=2�rnðn�1Þ=2fn;

rank M ¼ n;

where b�c is the floor function. The matrix M is of full

rank, indicating that the state of the system is control-

lable, a conclusion that is also obtained from the ei-

genfunction expansion. This lends support to the use

from now on of the finite-difference approximation to

analyze controllability.

2.2. Boundary control

Here the boundary condition T ðL; tÞ ¼ TLðtÞ will

be the manipulated variable through which control is

exercised. Using the constant outside temperature T1
as reference and defining h ¼ T � T1, Eq. (1) becomes,

oh
ot

¼ a
o2h
ox2

� fh ð9Þ

with the initial and boundary conditions ðoh=oxÞð0; tÞ ¼
0, hðL; tÞ ¼ TLðtÞ � T1, and hðx; 0Þ ¼ 0.

2.2.1. State controllability

Eq. (9) can be discretized to take the form of Eq. (5),

where hðtÞ is given by Eq. (6), A is given by Eq. (7),

uðtÞ ¼ hðL; tÞ 2 R and
B ¼ ½0; . . . ; r�T 2 Rn: ð10Þ

At the left end the adiabatic condition is the same as

before. However, the temperature at right end hnþ1 is not

known but is the manipulated variable u.
The controllability matrix M is

M ¼

0 � � � � � � 0 rn

0 � � � 0 rn�1 � � �
..
. ..

. ..
. ..

. ..
.

0 0 r3 � � � � � �
0 r2 �2r2ð2rþ fÞ � � � � � �
r �rð2rþ fÞ r3 þ rð2rþ fÞ2 � � � � � �

2
66666664

3
77777775

so that now

det M ¼ ð�2Þbn=2crðn2þnÞ=2;

rank M ¼ n:

Thus M is again of full rank, indicating that the state

of the system is boundary controllable.

2.2.2. Output controllability

Up to now control of the complete state of the system

has been considered. In thermal systems, however, it is

unusual to be able to observe the complete temperature

distribution. Most of the times users are interested in or

able to work with only a vector y 2 Rp, called the out-

put, where

yðtÞ ¼ ChðtÞ ð11Þ

with C 2 Rp�n. Output controllability refers to the abil-

ity of a suitable control input uðtÞ to be able to take the

output yðtÞ from any point to any another. The system

represented by Eqs. (5) and (11) is output controllable

[11] if and only if the rank of the matrix

N ¼ ½CB;CAB; . . . ;CAn�1B� 2 Rp�n

is p. If, for example, it is desired to control the tem-

perature at x ¼ 0 which is h1, then

C ¼ ½1; 0; . . . ; 0� 2 R1�n:

Thus

N ¼ ½0; . . . ; 0; 2rn�

which has a rank equal to p ¼ 1 indicating that this

output is controllable.

2.2.3. Optimal control

Since the system is boundary controllable, there ex-

ists a control function TLðtÞ which transfers the system

from the initial state h0 ¼ hðx; 0Þ to the target state

hf ¼ hðx; tfÞ within a finite time tf . The solution of

Eq. (9) is



Fig. 2. Variation of TL with time for optimal boundary control.
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hðx; tÞ ¼ e�ft 2a
L

X1
m¼0

cme
�ac2mtð

"
� 1Þm cos cm

�
Z t

t0¼0

eac
2
mt

0 ½TLðt0Þ � T1�dt0
#
;

where cm ¼ ð2mþ 1Þp=2L. Finding TLðtÞ requires the

solution of this Fredholm integral equation of the first

kind, and there are ways to solve it numerically [12].

However, it is obvious that the control input, i.e. the

temperature at the boundary, is not unique.

With a finite-dimensional approximation, however,

optimal control theory [1] can be used to get

uðtÞ ¼ hðL; tÞ ¼ BTeA
Tðt�tf ÞW �1ð0; tÞ½h0 � eAthf �;

where eAt ¼
P1

k¼0ðtk=k!ÞAk . h0 and hf are n-dimensional

vectors representing the initial and target temperatures,

respectively. W �1ð0; tÞ is a n� n matrix called the

reachability gramian of the system defined by

W ð0; tÞ ¼
Z t

0

eðs�tf ÞABBTeðs�tf ÞAT

ds:

Thus, starting from a zero temperature distribution

any given temperature distribution in the finite-dimen-

sional approximation can be reached at a given time by

varying only the temperature at one end of the bar.

As a special case, if it is desired that the output of the

system be the temperature distribution along the bar,

then C in Eq. (11) is the identity matrix. This, of course,

is state controllability which has already been confirmed.

For example, the system can be discretized in a small

number of divisions, say n ¼ 6, and it may be required
that the temperatures at these locations be changed from

the initial values of (say) h ¼ 0 �C to the final temper-

ature of hf ¼ 25 �C in a time interval tf ¼ 20 s. For il-

lustration, numerical values of the parameters are set at

f ¼ 0:0118 s�1 and r ¼ 1 s�1. Matrices M and N are

equal and are found to have a rank equal to 6, indicating

that the system is controllable. The results of optimal

control are shown in Figs. 2 and 3. Fig. 2 shows the

variation of the temperature at the end of the bar that

will take the temperature distribution to the target. In

Fig. 3 the variation of the temperature with time at each

of the six nodes is plotted.
3. Cross-flow heat exchanger model

Among the many kinds of water-to-air heat ex-

changers, the cross-flow geometry is very common.

Though they sometimes have multiple rows and circuits,

the simplest geometry that can be easily computed, i.e. a

single-tube with water flow inside and cross-flow of air

outside, will be considered here. A schematic of this

arrangement is shown in Fig. 4. Although a straight tube

is shown, it may zig-zag over the face of the heat ex-

changer so as to make it more compact. Controllability

analysis based on a finite-difference approximation of

the governing equations will be carried out.

To enable a one-dimensional analysis, the simplifying

assumptions that the flow is hydrodynamically and

thermally fully developed, and that the velocity and

temperature are uniform over the cross-section of the

pipe will be used. The physical properties of the fluid are



Fig. 3. Variation of the temperatures at the six nodes with time as a result of optimal boundary control. The nodes are numbered

sequentially from the x ¼ 0 end.

Fig. 4. Schematic of single-tube cross-flow heat exchanger with in-tube water, tube wall and over-tube air.
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also constant. There is convective heat transfer between

the water and the tube wall, conduction along the tube

wall, and convection between the tube wall and the

surrounding air. The heat transfer coefficients are the

same as in [9]. The following are the governing equa-

tions for this problem with appropriate boundary con-

ditions.

On the outside of the tube

_mma

L
caðT in

a � T out
a Þ ¼ ho2proðTa � TtÞ; ð12Þ
where L is the length of the tube, _mma is the mass flow rate

of air, ca is its specific heat, T in
a and T out

a are the incoming

and outgoing air temperatures, ho is the heat transfer

coefficient in the outer surface of the tube, ro is the outer
radius of the tube, Ta is the air temperature surrounding

the tube, and Tt is the tube wall temperature. For con-

venience, the air temperature can be assumed to be ap-

proximately

Ta ¼
T in
a þ T out

a

2
: ð13Þ
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This can be substituted in Eq. (12).

In the water

qwcwpr
2
i

oTw
ot

þ _mmwcw
oTw
ox

¼ hi2priðTt � TwÞ; ð14Þ

where qw is the water density, cw is its specific heat, and

_mmw is the water mass flow rate. In these equations, in

general Tt ¼ Ttðx; tÞ, Tw ¼ Twðx; tÞ, T out
a ¼ T out

a ðtÞ, and

Ta ¼ TaðtÞ. The boundary and initial conditions are

Ttð0; tÞ ¼ Twð0; tÞ ¼ T in
w , TtðL; tÞ ¼ TwðL � tÞ, and Ttðx; 0Þ ¼

Twðx; 0Þ ¼ 25 �C (arbitrarily).

Finally, in the wall of the tube

qtctpðr2o � r2i Þ
oTt
ot

¼ ktpðr2o � r2i Þ
o2Tt
ox2

þ 2prohoðTa � TtÞ

� 2prihiðTt � TwÞ; ð15Þ

where qt is the density of the tube material, ct is its

specific heat, kt is its thermal conductivity, ri is the inner
radius of the tube, hi is the heat transfer coefficient in the

inner surface of the tube, and Tw is the water tempera-

ture.

Apart from geometry and material properties, there

are four parameters in Eqs. (12)–(15): two mass flow

rates and two inlet temperatures for water and air, re-

spectively, that can be used for control purposes as the

manipulated variable. Two single-input cases will be

analyzed for the purpose of controlling the fluid outlet

temperatures. First, when the mass flow rates _mma and _mmw

are constant and control of the heat exchanger outlet

temperatures T out
a and T out

w is accomplished by manipu-

lating either T in
a or T in

w . Second, when one of the flow

rates ( _mmw will be used as an example) is used as a ma-

nipulated variable; the problem is then non-linear.
4. Manipulated variable: water inlet temperature

In this section the water inlet temperature T in
w will

be used as a manipulated variable while all other para-

meters like T in
a , _mmw, and _mma are constant.

4.1. Finite-dimensional approximation

Dividing the computational domain spatially into n
parts and using finite-differences, Eqs. (12)–(15) can be

put in the form of Eq. (5). This is done by approxi-

mating first- and second-order derivatives by upwind

and central differences, respectively, for Eqs. (15) and

(14), and eliminating the algebraic Eq. (12) to give

dTt
dt

¼ a1Tt;i þ ctðTt;iþ1 þ Tt;i�1Þ þ a2Tw;i þ a3T in
a ; ð16Þ

dTw
dt

¼ �b1Tw;i þ b2Tw;i�1 þ a4Tt;i; ð17Þ
where

a1 ¼
2proho

qtctpðr2o � r2i Þ
a5

2þ a5

�
� 1

�
� 2at
Dx2

� a2;

a2 ¼
2prihi

qtctpðr2o � r2i Þ
;

a3 ¼
2proho

qtctpðr2o � r2i Þ
1

2

�
þ 1� a5=2

2þ a5

�
;

a4 ¼
4hi

qwcwDi
;

a5 ¼
2prohoL
_mmaca

;

b1 ¼
_mmw

qwpr
2
i Dx

þ a4;

b2 ¼
_mmw

qwpr
2
i Dx

;

ct ¼
at
Dx2

:

The boundary conditions are

Tt;0 ¼ Tw;0 ¼ T in
w ; ð18Þ

Tt;n ¼ Tw;n: ð19Þ

In the following the variables

T ðtÞ ¼ ½Tt;1ðtÞ; Tw;1ðtÞ; Tt;2ðtÞ; Tw;2ðtÞ; . . . ; Tw;nðtÞ�T

2 Rð2n�1Þ�1; ð20Þ

A¼

a1 a2 ct 0 � � � 0

a4 �b1 0 � � � 0

ct 0 a1 a2 ct 0 � � � 0

0 b2 a4 �b1 0 � � � 0

0 0 ct 0 a1 a2 ct 0 � � � 0

0 0 0 b2 a4 �b1 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.

� � �

0 � � � 0 b2 a4 �b1

2
6666666666666666666664

3
7777777777777777777775

2Rð2n�1Þ�ð2n�1Þ ð21Þ

will be used. B will depend on the choice of the manip-

ulated variable.

4.2. State controllability

The governing equations can be written as

dT
dt

¼ AT þ Buþ F ; ð22Þ

where T ðtÞ and A are given by Eqs. (20) and (21), and
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B ¼ at
Dx2

;
_mmw

qwpr
2
i Dx

; 0; . . . ; 0

" #T
2 R2n�1�1;

F ¼ ½a3; 0; a3; 0; . . . ; a3; 0�TT in
a 2 R2n�1�1;

u ¼ T in
w :

Since A is non-singular the transformation

h ¼ A�1F þ T ð23Þ

can be introduced to write Eq. (22) in the form of Eq.

(5). For any n, it can be shown by computation that the

controllability matrix M defined in Eq. (8) has a full

rank, indicating that h is controllable.

As the number of divisions of the spatial domain

n increases, the size of M also increases. The range of

eigenvalues increases correspondingly and the rank

becomes difficult to compute numerically. More impor-

tantly, however, this also means that the system needs

large values of the control input which may not be

available in practice. The condition number of M , CM,

being the ratio of the largest to smallest singular values,

is thus an indicator of the degree to which the system

may be controlled with a bounded input. Of course, M is

singular and not of full rank if CM is infinite. Fig. 5

shows the effect of n on CM. As n increases, it becomes

increasingly difficult to take the system to a desired h.
So far the air and water flow rates have been fixed.

Fig. 6 shows the effect of varying air velocity on CM, and

it is not appreciable. On the other hand the water ve-

locity is seen to have a stronger influence, as shown in

Fig. 7. At the minimum CM the system is the most

controllable. Thus the condition number provides in-
Fig. 5. The effect of the number of divisions on the condition numb
formation on the best flow rates for control of the heat

exchanger when the inlet water temperature is used as a

manipulated variable.

4.3. Output controllability

There are many different possibilities of outputs that

may be controlled. Some of the those that have practical

use are the following.

(a) One example of an output of the system is the heat

exchanger tube wall temperature distribution, for

which

C ¼ diag½1; 0; 1; . . . ; 0� 2 Rð2n�1Þ�ð2n�1Þ:

The output controllability matrix N has the same

size as C. However, N is not of full rank, so that this

output is not controllable.

(b) Another is the outlet water temperature T out
w , so that

C ¼ ½0; . . . ; 0; 1� 2 R1�2n�1;

for which

N ¼ 0; . . . ;
_mmw

qwpr
2
i Dx

at
Dx2

� �n�1

2
4

þ _mmw

qwpr
2
i Dx

 !n�1

4hi
qwcwDi

; . . .

3
5:

The output is controllable.

(c) A third example that is also of practical interest is

the average outlet air temperature
er when water inlet temperature is the manipulated variable.



Fig. 6. The effect of air flow rate on the condition number when water inlet temperature is the manipulated variable; four different

water velocities are indicated.

Fig. 7. The effect of water flow rate on the condition number when water inlet temperature is the manipulated variable; air flow is in

the 0.1–2 m/s range.
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T
out

a ðtÞ ¼ 1

L

Z L

0

T out
a ðx; tÞdx; ð24Þ

where

T out
a ðx; tÞ ¼ ð1� a5=2ÞT in

a þ a5Tt
1þ a5=2

;

is used with the trapezoidal rule for integration. The

matrix

C ¼ Dx
1

2
; 0; 1; 0; . . . ; 1; 0;

1

2

� �
2 R1�ð2n�1Þ ð25Þ

with p ¼ 1. The output controllability matrix is
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N ¼ Dx
at

2Dx2
; . . .

h i
:

N has a rank equal to p, indicating that the system is

output controllable.
5. Manipulated variable: air inlet temperature

5.1. State controllability

It is also common to have the inlet air temperature

T in
a as a manipulated variable. Matrix A is still as shown

in Eq. (21) but

B ¼ ½a3; 0; a3; 0; . . . ; a3�T 2 R2n�1�1;

F ¼ at
Dx2

T in
w ;

_mmw

qwpr
2
i Dx

T in
w ; 0; . . . ; 0

" #T
2 R2n�1�1;

u ¼ T in
a :

With the transformation of Eq. (23), the governing

equation can be reduced to the form of Eq. (5) and the

controllability matrix defined by Eq. (8) can be com-

puted. It is found that M has a full rank, indicating the

system is controllable: by changing T in
a any set of water

and tube wall temperatures at a finite number of points

can be reached in finite time. When different water and

air velocity are used, a similar phenomenon occurs as in

Section 4.2 when the water inlet temperature was the

manipulated variable. The results of varying the air and

water flow rates on CM are shown in Figs. 8 and 9, re-
. 8. The effect of air flow rate on the condition number when air in

ocities are indicated.
spectively. Again the water flow rate is found to have a

significant effect but not the air flow rate. There is an

optimum water flow rate at which the system is the most

controllable.

5.2. Output controllability

If the output is the average outlet air temperature

defined by Eq. (24), it can be calculated with the C
matrix in Eq. (25). The output controllability matrix is

N ¼ Dx½ðn� 1Þa3; . . .�:

N has a rank equal to p, indicating that the system is

output controllable.
6. Manipulated variable: water velocity

In this Section the objective is to control the outlet

water temperature T out
w by manipulating the water flow

rate _mmw while keeping constant the air flow rate _mma, and

the inlet air and water temperatures T in
a and T in

w , re-

spectively. If the water velocity is used as a manipulated

variable, the situation is entirely different from those

treated before. The control problem is non-linear since

the manipulated variable _mmw appears as a product with

the unknown temperature Twðx; tÞ in Eq. (14). The pre-

viously used linear controllability ideas cannot be directly

applied in this situation. Furthermore, controllability of

a linearized approximation does not imply controlla-

bility over the entire state space [13,14].
let temperature is the manipulated variable; four different water



Fig. 9. The effect of water flow rate on the condition number when air inlet temperature is the manipulated variable; air flow is in the

0.1–2 m/s range.
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Finding the range of T out
w by solving Eqs. (12)–(15)

turns out to be a difficult task. However, it is obvious

that by manipulating the water velocity even over the

entire range of positive real numbers one cannot reach

all possible water outlet temperatures. Two steady-state

extremes can be considered. When the water flow rate is

small the advective term in the steady-state version of

Eq. (14) is also small, so that Tt ¼ Tw. Substituting this in
steady Eq. (15) where the conduction along the tube wall

is now negligible, we have Tt ¼ Ta. Since this cannot

satisfy the boundary conditions there is a thin boundary

layer near the entrance x ¼ 0. The water temperature at

the outlet is T out
w ¼ T in

a . Similarly at the other extreme,

for large flow rates Eqs. (15) and (14) give T out
w ¼ T in

w .

Thus, in general, in the steady state T out
w is between the

two temperatures, T in
a and T in

w . Since this range of tem-

peratures can be reached in the steady state, it follows

that these states are controllable.

The arguments above are not valid for unsteady sit-

uations where the dynamics of the control system should

be taken into account. However, one can invoke the

laws of thermodynamics to assert that the local, in-

stantaneous temperature at any point within the heat

exchanger cannot be outside the (T in
a , T in

w ) range. Thus

T out
w is controllable only within this range and is not

globally controllable if _mmw is the manipulated variable.
7. Conclusions

The controllability of cross-flow heat exchangers is

investigated from a theoretical point of view. This
property guarantees the ability of the heat exchanger to

transfer a system from an initial to a final state. How-

ever, this does not imply that the system will stay there.

State controllability is for the complete system while

output controllability refers to the output only. A finite-

difference approach has been introduced for the analysis

of systems governed by a coupled set of PDEs. Two

fundamentally different problems arise when the tem-

peratures and the flow rates are used as a manipulated

variables. The former is linear, and the latter non-linear.

Cases of controllability with respect to different ma-

nipulated variables were analyzed here. The heat ex-

changer was found to be less controllable for high air

and water flow rates. There is also the issue of practical

controllability that can be quantified on the basis of the

condition number of the controllability matrix. It is

found that there is an optimum water flow rate at which

the heat exchanger is the most controllable.

In linear controllability it is assumed that the de-

pendent variables are allowed to vary over a semi-infi-

nite range. There are practical restrictions to this since

the temperatures and flow rates can take on only posi-

tive values. Thus the constraints Tw > 0, Tt > 0, _mmw > 0

and _mma > 0 impose restrictions on the range over which

the heat exchanger is controllable. There is an even

greater restriction on the manipulated variables; they

cannot be varied in an infinite range even if positive. In

this sense all the input variables are constrained: the

inlet air and water temperatures are between certain

bounds as are the air and water flow rates. This also

reduces the controllability of the system. So, a system

that is theoretically controllable may not practically be
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so because of these limitations on both the system and

manipulated variable.
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